Searching for New Colored States at the Early LHC

Jay Wacker

SLAC

ATLAS Jamboree Brookhaven National Lab January 10, 2011

with Daniele Alves & Eder Izaguirre arXiv:1003.3886, 1008:0407, 1101:xxxx

<u>Outline</u>

Simplified Models

Jets + MET Simplified Models

First LHC Results and Their Implication

Going Forward to 1fb⁻¹

LHC is the New Energy Frontier

(but you still need luminosity)

The first Jets+MET Search came out with 70 nb⁻¹ of integrated luminosity

ATLAS NOTE

ATLAS-CONF-2010-065

20 July, 2010

Early supersymmetry searches in channels with jets and missing transverse momentum with the ATLAS detector

Abstract

This note describes a first set of measurements of supersymmetry-sensitive variables in the final states with jets, missing transverse momentum and no leptons from the $\sqrt{s} = 7$ TeV proton-proton collisions at the LHC. The data were collected during the period March 2010 to July 2010 and correspond to a total integrated luminosity of $70 \pm 8 \,\mathrm{nb}^{-1}$. We find agreement between data and Monte Carlo simulations indicating that the Standard Model backgrounds to searches for new physics in these channels are under control.

SU4*10

As light as possible inside of mSugra Still had to multiply it by 10 to be visible

But with 70nb⁻¹, what should we expect?

No other theories were explored

mSugra Review

5 Parameters at the GUT Scale

$$m_{\frac{1}{2}}, m_0^2, A_0, B_\mu, \mu$$

$$B_{\mu}, \mu \rightarrow v_{\rm EW} = 246 \text{ GeV}, \tan \beta$$

mSugra and "Gaugino Mass Unification"

$$m_{\tilde{g}}: m_{\tilde{W}}: m_{\tilde{B}} = \alpha_3: \alpha_2: \alpha_1 \simeq 6:2:1$$
 Most models look like this

A shocking lack of diversity

mSugra and "Gaugino Mass Unification"

$$m_{\tilde{g}}: m_{\tilde{W}}: m_{\tilde{B}} = \alpha_3: \alpha_2: \alpha_1 \simeq 6:2:1$$

Most models look like this

A shocking lack of diversity

The Phenomenological MSSM

$$m_{\tilde{q}}^2, m_{\tilde{u}^c}^2, m_{\tilde{d}^c}^2, m_{\tilde{\ell}}^2, m_{\tilde{e}^c}^2$$

$$m_{\tilde{g}}, m_{\tilde{W}}, m_{\tilde{B}}, \mu$$

$$A_t, A_b, A_{\tau}$$

$$m_{h_u}^2, m_{h_d}^2, B_{\mu}$$

- 5 for 1st 2 Generations
- 5 for 3rd Generations
- 4 for *-ino masses
- 3 for A-terms
- 3-1 for Higgs Sector

Berger, Gainer, Hewett, Rizzo 2008

How to parameterize this without using a CPU-Century?

Need to cover signature space better

Real models have dozens of parameters

Sometimes small/reasonable perturbations can make huge differences in the visibility of a model

Need to simplify and abstract models

Simplified Models

(Effective Field Theories for Collider Physics)

Limits of specific theories

Only keep particles and couplings relevant for searches

Still a full Lagrangian description

Removes superfluous model parameters

Masses, Cross Sections, Branching Ratios (*e.g.* MARMOSET) Add in relevant modification to models (*e.g.* singlets)

Not fully model independent, but greatly reduce model dependence

Captures specific models

Including ones that aren't explicitly proposed Easy to notice & explore kinematic limits

Hides Similarities Between Theories

Color octet that decay into missing energy

MSSM

Universal Extra Dimensions

High Cut-Off

Low Cut-Off

Large Mass Splittings

Small Mass Splittings

Similar in spirit, radically different in practice

<u>Outline</u>

Simplified Models

Jets + MET Simplified Models

First LHC Results and Their Implication

Going Forward to 1fb⁻¹

Jets + MET

Solution to Hierarchy Problem

If the symmetry commutes with SU(3)_C, new colored top partners

note twin Higgs exception: $SU(3)_{C_1} \times SU(3)_{C_2} \ltimes \mathbb{Z}_2$

Dark Matter

Wimp Miracle: DM a thermal relic if mass is 100 GeV to 1 TeV

Usually requires a dark sector, frequently contains new colored particles (e.g. Split Susy)

Fewest requirements on spectroscopy

Doesn't require squeezing in additional states to decay chains

Simplified Models

Direct Decays

Directly Decaying Gluino

Study one decay mode $\tilde{g} \to q \bar{q} \tilde{\chi}^0$

Keep masses and total cross section free

$$m_{\tilde{g}} \quad m_{\chi^0} \quad \sigma(pp \to \tilde{g}\tilde{g}X)$$

What are the current limits?

Hard to interpret...

Model Independent Constraints Electrically Neutral Colored Particles

Weak model independent limits

Limits come from event shape variables at LEP (e.g. Thrust)

FIG. 2: Bounds on light colored particles from LEP data. The darker region is completely excluded at 95% confidence. The lighter region is an uncertainty band including estimates of various theoretical uncertainties.

These were "best case scenario numbers"

e.g.
$$m_{\tilde{g}} = 210 \text{ GeV}$$
 $m_{\tilde{B}} = 100 \text{ GeV}$

Assumed no missed discoveries

Tevatron never searched in physics parameter space

Possibility for light gluinos lurking

<u>Outline</u>

Simplified Models

Jets + MET Simplified Models

First LHC Results and Their Implication

Going Forward to 1fb⁻¹

Estimates of ATLAS ICHEP Reach

Can 70nb⁻¹ improve Tevatron results?

Set limit on $\sigma(pp \to \tilde{g}\tilde{g}X) \epsilon$

Cut	Topology	$1j + \not\!\!E_T$	$2^+j + E_T$	$3^+j + E_T$	$4^{+}j + E_{T}$
1	p_{T1}	$> 70\mathrm{GeV}$	$>70\mathrm{GeV}$	$> 70\mathrm{GeV}$	$> 70\mathrm{GeV}$
2	p_{Tn}	$\leq 30\mathrm{GeV}$	$> 30 \mathrm{GeV}(n=2)$	$> 30 \mathrm{GeV}(n=2,3)$	$> 30 \mathrm{GeV}(n=2-4)$
3	$ ot\!$	$> 40\mathrm{GeV}$	$> 40\mathrm{GeV}$	$> 40\mathrm{GeV}$	$> 40\mathrm{GeV}$
$\boxed{4}$	$p_{T\ell}$	$\leq 10 \mathrm{GeV}$	$\leq 10\mathrm{GeV}$	$\leq 10\mathrm{GeV}$	$\leq 10\mathrm{GeV}$
5	$\Delta\phi(j_n, ot\!\!\!E_{T\mathrm{EM}})$	none	[>0.2,>0.2]	[> 0.2, > 0.2, > 0.2]	[> 0.2, > 0.2, > 0.2, none]
6	$ \not\!\!E_{T\mathrm{EM}}/M_{\mathrm{eff}} $	none	> 0.3	> 0.25	> 0.2
	$N_{ m Pred}$	46^{+22}_{-14}	6.6 ± 3.0	1.9 ± 0.9	1.0 ± 0.6
	$N_{ m Obs}$	73	4	0	1
	$\sigma(pp \to \tilde{g}\tilde{g}X)\epsilon _{95\% \text{ C.L.}}$	663 pb	46.4 pb	20.0 pb	56.9 pb

 $3^+j + \cancel{E}_T$ usually most effective

Need to calculate efficiencies

(the hard part)

We need to know what fraction of the events from a given theory pass the cuts

Efficiency is the fraction of events that passed the cuts Do this for each $(m_{\tilde{g}}, m_{\chi})$ pair

Validated PGS to about 15% accuracy

A look at how PS/ME matching alters the signal 150 GeV particle going to 140 GeV LSP and 2 jets

In rest frame of each gluino: two 5 GeV "jets" and a LSP with 3 GeV momentum

A look at how PS/ME matching alters the signal 150 GeV particle going to 140 GeV LSP and 2 jets

In rest frame of each gluino: two 5 GeV "jets" and a LSP with 3 GeV momentum

Parton level

Detector level

Totally invisible: faked by QCD with $\sqrt{\hat{s}_{BG}} \sim 20 \text{ GeV}$

Give the gluino big boost! $p_{T\tilde{g}}\gg m_{\tilde{g}}$

> Jets merge and MET points in direction of jet More energy, but looks like jet mismeasurement

Putting it all together

There could have been discoveries!

PS/ME Matching on Signal

Higher multiplicities affected more Degenerate region can have limits altered by O(1)

Generally increases sensitivity

contours =
$$\frac{\sigma_{\text{lim}}^{\text{no-matching}}}{\sigma_{\text{lim}}^{\text{matching}}} - 1$$

Efficiencies are over estimated with jet vetos

Outline

Simplified Models

Jets + MET Simplified Models

First LHC Results and Their Implication

Going Forward to 1fb⁻¹

Looking towards future analyses

Current plans are for a single multijet search Maximize reach for highest mass gluino discovery

Should maximize sensitivity to smallest cross section for all masses e.g. if only 10% of the decays are visible

Still need to be sensitive to light objects with small cross sections/branching ratios

Cuts & Optimization

• Generated signal for a wide range of masses $\,m_{\tilde{g}}, m_{\tilde{\chi}}\,$ and the four decay modes discussed

• Estimated sensitivities for cuts on several kinematic variables,

$$\not\!\!E_T$$
, H_T , p_{Ti} , $M_{\text{eff}} \equiv \not\!\!E_T + \Sigma p_{Ti}$, $\frac{\not\!\!E_T}{M_{\text{eff}}}$, $\frac{p_{Ti}}{\not\!E_T}$

- → Hard to beat missing and visible energy
- \rightarrow Stuck with combined cuts on $\not\!\!\!E_T$, H_T

7 TeV Backgrounds

Soon to be available at LHCBackgrounds.com

Include 30% systematic error on BG Estimates

Simplified Models for this study

Direct Decays

Simplified Models for this study

One-Step Cascade Decays

$$m_{\tilde{\chi}^{\pm}} = m_{\tilde{\chi}} + \frac{1}{2} (m_{\tilde{g}} - m_{\tilde{\chi}})$$

neutral majorana fermion ("LSP")

Simplified Models for this study

Two-Step Cascade Decays

$$\widetilde{\chi}^{\pm}$$
 electroweak majorana fermion ("Wino")

neutral majorana fermion ("Higgsino")

neutral majorana fermion ("LSP")

$$m_{\tilde{\chi}^{\pm}} = m_{\tilde{\chi}} + \frac{1}{2} (m_{\tilde{g}} - m_{\tilde{\chi}})$$

$$m_{ ilde{\chi}'} = m_{ ilde{\chi}} + rac{1}{2} \left(m_{ ilde{\chi}^{\pm}} - m_{ ilde{\chi}}
ight)$$

Hunting for Optimal Cuts

Want to have good coverage for all these models for all kinematic ranges

Want to minimize:

$$\frac{\sigma_{
m lim}({
m cut})}{\sigma_{
m optimal\ lim}}$$

QUESTION: Is there a single cut whose sensitivity is close to optimal for all masses and decay modes?

ANSWER: No

Hunting for Optimal Cuts

TASK: Find the *minimum* set of cuts on MET and H_T whose *combined* reach is close to optimal (within a given accuracy) for all models.

Hunting for Optimal Cuts

Multiple Search Regions

- minimal set of cuts (*multiple search regions*) whose combined reach is within optimal to a given accuracy
 - → for all masses and decay modes
 - → for three luminosity scenarios: 10 pb⁻¹, 100 pb⁻¹, 1 fb⁻¹
- size of the set depends on the optimal accuracy
 - + $5\% \rightarrow \mathcal{O}(30 \text{ cuts})$
 - + $10\% \rightarrow \mathcal{O}(16 \text{ cuts})$
 - $+30\% \rightarrow \mathcal{O}(7 \text{ cuts})$
 - + $50\% \rightarrow \mathcal{O}(4 \text{ cuts})$
- not sensitive to exact values of the cuts
- only comprehensive when combined

Multiple Search Regions combined reach within 30% of optimal

• 7 search regions necessary:

$$E_T > 500 \text{ GeV}, H_T > 750 \text{ GeV}$$

$$E_T > 450 \text{ GeV}, H_T > 500 \text{ GeV}$$

$$E_T > 100 \text{ GeV}, H_T > 450 \text{ GeV}$$

$$E_T > 100 \text{ GeV}, H_T > 650 \text{ GeV}$$

$$E_T > 150 \text{ GeV}, H_T > 950 \text{ GeV}$$

$$E_T > 250 \text{ GeV}, H_T > 300 \text{ GeV}$$

$$E_T > 350 \text{ GeV}, H_T > 600 \text{ GeV}$$

Multijet high MET

cut	ch	MET	Н⊤
	2+j	500	750
	3+j	450	500
	4+j	100	450
	4+j	100	650
	4+j	150	950
	4+j	250	300
	4+j	350	600

Designing Optimal Regions

- Choice of multiple search regions depends upon
 - backgrounds
 - detector efficiencies & acceptances
 - how good is good enough
 - etc
- Not something a theorist should be designing too closely
- Scans are expensive for experiments, providing benchmark theories saves effort
- We've done rough exploration of corners of parameter space looking for

List of Benchmark Models

- Chosen to maximize differences in how they appear in given searches
- Simple and easy to define
- Consistent theories on their own

***************************************	Magnetic Editor (P101/-1/2-14/40-1110-0-110-121/-1/2-14/40-1110-0-110-121/-1/2-14	MANUSCANIE CONTRACTOR OF THE PROPERTY OF THE P
Name	$m_{ ilde{g}}~({ m GeV})$	$m_{ ilde{\chi}^0}~({ m GeV})$	Decay
\mathcal{M}_1	800	100	direct 2-body
\mathcal{M}_2	800	350	direct 2-body
\mathcal{M}_3	550	300	direct 2-body
\mathcal{M}_4	350	150	direct 2-body
\mathcal{M}_5	250	50	direct 3-body
\mathcal{M}_6	400	100	direct 3-body
\mathcal{M}_7	400	350	direct 3-body
\mathcal{M}_8	650	300	direct 3-body
\mathcal{M}_9	150	50	1-step cascade (x=1/4)
\mathcal{M}_{10}	400	80	1-step cascade (x=1/4)
\mathcal{M}_{11}	450	350	1-step cascade (x=1/4)
\mathcal{M}_{12}	600	200	1-step cascade (x=1/4)
\mathcal{M}_{13}	250	200	1-step cascade (x=1/2)
\mathcal{M}_{14}	300	50	1-step cascade (x=1/2)
\mathcal{M}_{15}	550	500	1-step cascade (x=1/2)
\mathcal{M}_{16}	700	200	1-step cascade (x=1/2)
\mathcal{M}_{17}	250	0	1-step cascade (x=3/4)
\mathcal{M}_{18}	350	200	1-step cascade (x=3/4)
\mathcal{M}_{19}	450	100	1-step cascade (x=3/4)
\mathcal{M}_{20}	900	400	1-step cascade (x=3/4)
\mathcal{M}_{21}	300	50	2-step cascade
\mathcal{M}_{22}	750	150	2-step cascade
\mathcal{M}_{23}	750	550	2-step cascade
\mathcal{M}_{24}	800	750	2-step cascade

$$m_{\chi^{\pm}} = m_{\chi^0} + x(m_{\tilde{g}} - m_{\chi^0})$$

Lots more to be done

- This work focused on pair produced colored octets
- Important to look at other possibilities:
 - → resonant production
 - → color triplets (radiate less different search regions for compressed spectra?)
 - → monojet signatures not from radiation (*e.g.*, squark-neutralino associate production, resonantly produced composite gluon to gluon + invisible)
 - → multijet signatures with no missing energy (very different story)
 - → other channels (leptons, heavy flavor, photons)
- Joint effort in this direction: http://lhcnewphysics.org

Summary

- Searches for new colored states with jets+MET signatures are promising with the LHC data of next year
- Benchmark driven searches are suboptimal (and too model dependent)
- Reach can be highly improved by:
 - → less model dependent parametrizations (simplified models) advantage: sensitive to a large range of phase space
 - → multiple search region strategy

<u>advantage</u>: combined reach is very close to optimal in the whole parameter space of models

2011 is the year for discoveries

Mass Reach as function of time

Lots of work to be done http://LHCNewPhysics.org

End.